
Malicious PDF Documents 
Explained

Didier Stevens



PDFs
PDF (Portable Document Format) is a widely used file format used to package 

everything from research papers to restaurant menus.

It’s a pretty complicated file format, so there is a large attack surface.

Some of the features in the PDF format can be used for malicious purposes, and are 

(somewhat) indistinguishable from legitimate behavior.

Thankfully, these attacks are limited and generally require the user to blindly click ‘ok’ 

on a few dialog boxes.



Legitimate code, malicious behavior
Files can be embedded in a PDF, and then opened after a prompt presented to the user 

is clicked on.

There is nothing in the format that stops you from embedding an executable, but most 

PDF readers will refuse to extract it.

However, not all forms of executable code are blacklisted, but the user still has to 

approve the execution. (example: a python script)



Scripting PDFs
The PDF format allows to use Javascript to add input validation to forms, and other 

similar tasks.

The Javascript interpreter is limited and cannot interact with the host system, but 

many vulnerabilities have been found in this interpreter.

There was a vulnerability in Adobe Reader’s util.printf Javascript function, which could 

be tricked into executing whatever input you gave it as native code.

The exploit could be set to run when the document is opened, silently infecting the 

user’s system.



Malformed Images
PDFs can contain many different kinds of images, so PDF readers have to have a lot of 

code to deal with all the different formats.

In 2009, a vulnerability was found in the JBIG2Decode decompression algorithm that 

allowed for arbitrary code execution if Javascript was enabled.

Again, this exploit happened as soon as the document was opened.



Heap Spraying
With many PDF exploits attackers cannot completely control where EIP will go, so 

they use a technique called Heap Spraying to maximize the probability that their 

shellcode will be executed.

In Heap Spraying, a large NOP sled with the shellcode appended to it (sometimes up 

to 1MB in size) is copied over and over into the Javascript heap, so that almost any 

given address in the heap will point to the shellcode.

This takes a while, so a PDF reader will freeze while the heap spray is happening. This 

can be an indicator of compromise.



Typical Payloads
Most PDF exploits do not execute their true payload during the exploit - most either 

download a new payload from the internet or extract a payload from the PDF.

Depending on the exploit, the PDF reader may or may not crash after the exploit.

The actual payload can be anything from a worm to ransomware.



Mitigations
Disabling Javascript won’t usually stop the exploit from running, but it will stop the 

heap spray. The reader will crash but no malicious code will run.

Turning on DEP, ASLR, or using an application sandbox can also stop the exploit from 

successfully executing malicious code.


